Attachment 1

Rocky Reach Reservoir White Sturgeon Monitoring and Evaluation Program, 2016

Rocky Reach Reservoir White Sturgeon Monitoring and Evaluation Program 2016

Dave Robichaud, Corey Wright, Wendell Challenger, and Lance Keller

November 1st, 2017

White Sturgeon Management Plan

 Need for supplementation identified and management plan adopted with overall goal of

> "promoting white sturgeon population growth in the Rocky Reach Reservoir to a level that is commensurate with available habitat"

- Supplementation Program began in 2010 with first broodstock collection (first released in 2011)
- Monitoring and Evaluation Program began in 2012

Supplementation Program

Monitoring and Evaluation Program

- Acoustic Telemetry Study: tracking tagged fish to determine emigration rates (part of survival analysis), investigate behavior & look at habitat use (2012 – 2016)
- Indexing Study: random sampling & mark-recapture study to look at survival, growth, and distribution (2013 - 2016)
- Diet Study: rod and reel angling with gastric lavage to determine diet of supplementation sturgeon (2016)

Acoustic Telemetry Study

Vemco Acoustic Tags

Tag 1% of each years roles	co 2012-2014

•	2015 50 larger older recaptured sturgeon tagged to
	estimate emigration over time

Year	Acoustic Tags Released		
2012	35		
2013	69		
2014	65		
2015	50		
Total	216		

Vemco Tag		Est. Expiration		
Model	Qty	Dates/Years		
V9P-2L	5	1 Jun 2016		
V13P-1L	1	26 Dec 2016		
V9-2L	50	2017		
V13-1L	3	2017		
V13-1L	50	2020		
Total	109			

Acoustic Detections

- Similar to past years, high use of upper reservoir persists with the most individuals and longest residence times in the top third of the reservoir.
- The 50 older (age-4 and age-6) sturgeon tagged in 2015 comprised 78% of movements in 2016.
- A subset of the older tagged sturgeon traveled farther than younger fish and some even made multiple reservoir transects more similar to behavior seen in adults.

						Hypothetical: 10,000 Fish Released	
Time Interval	Months After Release from Hatchery	Average Number of Active Tags	Total # of Emigration Events	Emigration Proportion	Equivalent Emigration Rate (% per year)	Emigrated	Remaine
Before 1st index	1-3	137.5	2	1.45%	5.82%	145	9,855
1st - 2nd index	5-15	118.0	3	2.54%	2.54%	250	9,605
2 nd - 3 rd index	16-27	127.8	3	2.35%	2.35%	226	9,379
After 3rd index	28+	95.1	2	2.10%	2.10%	197	9,182
TOTAL			10			818 of 10,0	000 (8.2%)

Prey Taxa	Number of samples (N= 39)	Frequency of occurrence (% out of 39 samples)	Weight (g) all samples	Proportion of total weight	Mean proportion of individual's sample weight
Fish					
Unknown Fish	18	46.2%	53.17	45.2%	22.6%
Unknown Salmonid	1	2.6%	0.52	0.4%	0.4%
Unknown Non-salmonid	3	7.7%	0.28	0.2%	3.7%
Chiselmouth (Acrocheilus alutaceus)	1	2.6%	28.02	23.8%	1.5%
Sculpin (Cottidae)	1	2.6%	0.61	0.5%	0.5%
Three-spined Stickleback (Gasterosteus acufeatus)	9	23.1%	1.49	1.3%	10.0%
Northern Pikeminnow	2	5.1%	5.15	4.4%	2.2%
All Fish	28	71.8%	89.24	75.8%	40.9%
Other					
Unknown Mammals	6	15.4%	8.39	7.1%	6.3%
Birds	5	12.8%	5.28	4.5%	4.4%
Rodents	1	2.6%	1.24	1.1%	0.1%
Coleoptera (Beetles)	1	2.6%	0.09	0.1%	0.1%
Diptera (Flies)	14	35.9%	0.11	0.1%	0.5%
Ephemeroptera (Mayflies)	3	7.7%	0.05	< 0.1%	< 0.1%
Herniptera (True bugs)	1	2.6%	< 0.01	< 0.1%	< 0.1%
Plecoptera (Stoneflies)	1	2.6%	0.01	< 0.1%	< 0.1%
Tricoptera (Caddisflies)	9	23.1%	0.05	< 0.1%	0.6%
Unknown Insect Parts	5	12.8%	0.01	< 0.1%	< 0.1%
Amphipoda (freshwater shrimp)	32	82.1%	0.65	0.6%	8.6%
Annelid (ringed or segmented worms)	9	23.1%	0.14	0.1%	3.3%
Bivalvia (mussels, dams)	4	10.3%	0.36	0.3%	0.3%
Decapoda (crayfish)	7	17.9%	6.93	5.9%	7.8%
Gastropoda: Physidae (bladder snails)	23	59.0%	1.61	1.4%	10.4%
Isopoda (woodlice)	20	51.3%	0.38	0.3%	2.7%
Zooplankton: Daphnia	4	10.3%	< 0.01	< 0.1%	0.0%
Organic Material	27	69.2%	1.96	1.7%	11.5%

Questions

Acoustic Telemetry and Diet Analysis

Setline Fishing

2011-2012: White sturgeon caught incidentally in Pikeminnow gear

12-14 setlines per day. Effort unknown.

Lines 76 m, 100 treble hooks (size 2-6), baited with crickets or worms.

2013: Indexing Program - Phase I start

8-10 setlines per day. 50 days over five sessions.

Stratified random site selection. Supplemented with targeted sets.

Lines 76 m, 80 treble hooks (size 2-6), baited with crickets or worms.

At end of year, experimented with circle hooks & squid bait.

2014-15: Indexing Program – Phase I continued

8-10 setlines per day. 45 days over five sessions.

Stratified random site selection. Supplemented with targeted sets.

Lines 76 m, 80 hooks (some with treble hooks with crickets or worms; others circle hooks with squid)

2016: Indexing Program – Phase II start

8-10 setlines per day. 45 days over five sessions.

Method standardized with other mid-Columbia River PUDs.

Random location selection. No more targeted sets.

Lines 122 m, 40 circle hooks (2.0 and 4.0 gauge), baited with squid.

Mark Recapture Model

Cormack Jolly Seber (CJS) Model estimates both:

- capture probability (p) during each sampling event
- survival rate (Φ) between each sampling event

The better you can resolve p, the greater your *confidence* in Φ .

Indexing Design

- · Don't be surprised if modifications are required
- Changes are more likely over sturgeon time-frames

If you are going to make changes to the indexing methods, you need detection and survival models that can account for them

Detection Modelling

Capture Probability (p) Model Terms:

- *M_t* Sampling method (incidental, random, targeted)
- H_t Gear (treble-cricket vs. circle-squid)
- E_t Effort (number of setlines deployed)
- A_{it} Sturgeon age (cohort effects)
- year, Annual differences

Detection Model: $logit(p_{i,t}) =$	npar	⊿AICc
$M_t + H_t + year_t : M_t : H_t : log(E_t) + year_t : M_t : H_t : log(A_{i,t})$	35	0.00
$ M_t + H_t + year_t: M_t: H_t: log(E_t) + M_t: H_t: log(A_{i,t}) + M_t: H_t: log(E_t): log(A_{i,t}) $	33	15.01
$M_t + H_t + year_t : M_t : H_t : log(E_t) + M_t : H_t : log(A_{l,t})$	27	18.29
$M_t + H_t + M_t$: H_t : $log(E_t) + M_t$: H_t : $log(A_{i,t})$	19	109.55
$M_t + H_t + M_t$: H_t : $log(E_t) + H_t$: $log(A_{l,t})$	16	114.82
$M_t + H_t + year_t: M_t: H_t: log(E_t) + M_t: H_t: log(E_t): log(A_{l,t})$	27	248.32
$\begin{aligned} M_t + H_t + year_t : M_t : H_t : \log(E_t) + H_t : A_{\ell,t} \\ M_t + H_t + year_t : M_t : H_t : \log(E_t) + H_t : A_{\ell,t} \\ M_t + H_t + year_t : M_t : H_t : \log(E_t) + M_t : H_t : \log(A_{\ell,t}) : \log(E_t) \\ M_t + H_t + year_t : M_t : H_t : \log(E_t) + \log(A_{\ell,t}) : \log(E_t) \\ M_t + H_t + year_t : M_t : H_t : \log(E_t) + \log(A_{\ell,t}) \\ M_t + H_t + year_t : M_t : H_t : \log(E_t) + \log(A_{\ell,t}) \\ M_t + H_t + year_t : M_t : H_t : \log(E_t) + \log(A_{\ell,t}) \end{aligned}$	24	308.84
$M_t + H_t + year_t : M_t : H_t : log(E_t) + M_t : H_t : A_{i,t}$	27	310.10
$M_t + H_t + M_t$: H_t : $\log(E_t) + M_t$: H_t : $\log(A_{i,t})$: $\log(E_t)$	19	354.22
$M_t + H_t + year_t: M_t: H_t: log(E_t) + log(A_{l,t})$	22	356.43
$M_t + H_t + year_t : M_t : H_t : log(E_t) + A_{l,t}$	22	451.01
$M_t + H_t + M_t$: H_t : $\log(E_t) + \log(A_{i,t})$	14	487.27
$M_t + H_t + year_t : M_t : H_t : log(E_t)$	21	503.95
$M_t + H_t + year_t + M_t$: H_t : $log(E_t)$	18	619.25
$M_t + H_t + M_t$: H_t : $log(E_t)$	13	626.67
$M_t + H_t + M_t$: H_t : E_t	13	723.64
$M_t + H_t + M_t$: H_t	10	1906.77
M_t : $year_t$	12	2633.27
M_t	5	4501.37
β_0	3	4540.64

Detection Modelling

Capture Probability (p) Model Terms:

- M_t Sampling method (incidental, random, targeted)
- H_t Gear (treble-cricket vs. circle-squid)
- E_t Effort (number of setlines deployed)
- A_{i,t} Sturgeon age (cohort effects)
- year, Annual differences

```
Final Detection Model (33 parameters):
```

 $logit(p_{i,t})$

 $= M_t + H_t + year_t: M_t: H_t: log(E_t) + M_t: H_t: log(A_{l,t}) + M_t: H_t: log(E_t): log(A_{l,t})$ Method Gear Effort Effects Age Effects

Survival Modelling

Survival (Φ) Model Terms:

 R_{i,t} 'Short-term survival' (first few months) -distinguishes short- vs. long-term survival

Y¹_{i,t} 'Medium-term survival' (rest of first year)

• G_i Release group (cohort effects)

L_i Sturgeon length
H_i Hatchery effects

O_i Parental origin (progeny of wild vs. captive parents)

• *RL_i* Release location (3 locations to compare)

Conclusions

- High use of upper reservoir with relatively low emigration from reservoir of acoustically tagged individuals to date
- Diets consistent with other studies with the exception of birds and mammals
- Complex detection model allowed survival differences between parental origin and among release locations to be detected
- · Survival rates low initially, improve over time
- Cohort-specific survival rates have been declining since 2012
- Abundance in Reservoir declining, despite addition of thousands of new fish

