APPENDIX 1 to LGLIP INTERCONNECTION REQUEST FOR A LARGE GENERATING FACILITY

- 1. The undersigned Interconnection Customer submits this request to interconnect its Large Generating Facility with the Transmission System.
- 2. This Interconnection Request is for (check one):
 - _____ A proposed new Large Generating Facility.
 - _____ An increase in the generating capacity or a Material Modification of an existing Generating Facility.
- 3. The type of interconnection service requested (check one):
 - _____ Energy Resource Interconnection Service
 - _____ Network Resource Interconnection Service
- 4. _____ Check here only if Interconnection Customer requesting Network Resource Interconnection Service also seeks to have its Generating Facility studied for Energy Resource Interconnection Service
- 5. Interconnection Customer provides the following information:
 - a. Address or location of the proposed new Large Generating Facility site (to the extent known);
 - b. Maximum summer at _____ degrees C and winter at _____ degrees C megawatt electrical output of the proposed new Large Generating Facility;
 - c. General description of the equipment configuration;
 - d. Commercial Operation Date (day, month, and year);
 - e. Name, address, telephone number, and e-mail address of Interconnection Customer's contact person;
 - f. Approximate location of the proposed Point of Interconnection (optional); and
 - g. Interconnection Customer data (set forth in Attachment A)
 - h. Requested capacity (in MW) of Interconnection Service (if lower than the Generating Facility Capacity)

- 6. Applicable deposit amount as specified in the LGLIP.
- 7. Evidence of Site Control as specified in the LGLIP (check one)
 - _____ Is attached to this Interconnection Request
 - _____ Will be provided at a later date in accordance with this LGLIP
- 8. This Interconnection Request shall be submitted to the representative indicated below:

Chelan PUD Attn: Transmission Engineering Manager P.O. Box 1231 Wenatchee, WA 98807-1231 interconnectionrequest@chelanpud.org

9. Representative of Interconnection Customer to contact:

[To be completed by Interconnection Customer]

Name: _____

Address: _____

Telephone: _____

Email: _____

10. This Interconnection Request is submitted by:

Name of Interconnection Customer: _____

By (signature):

Name (type or print):

Title: _____

Date: _____

Interconnection Request for a Large Generating Facility

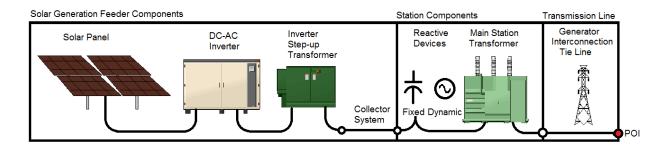
Attachment A

Generating Facility Name:

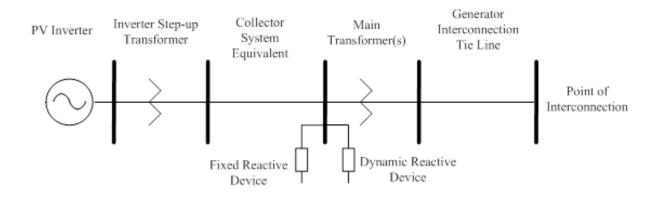
Interconnection Capacity

Gross Generating Facility Capability (at Inverter Terminals): _____ MVA

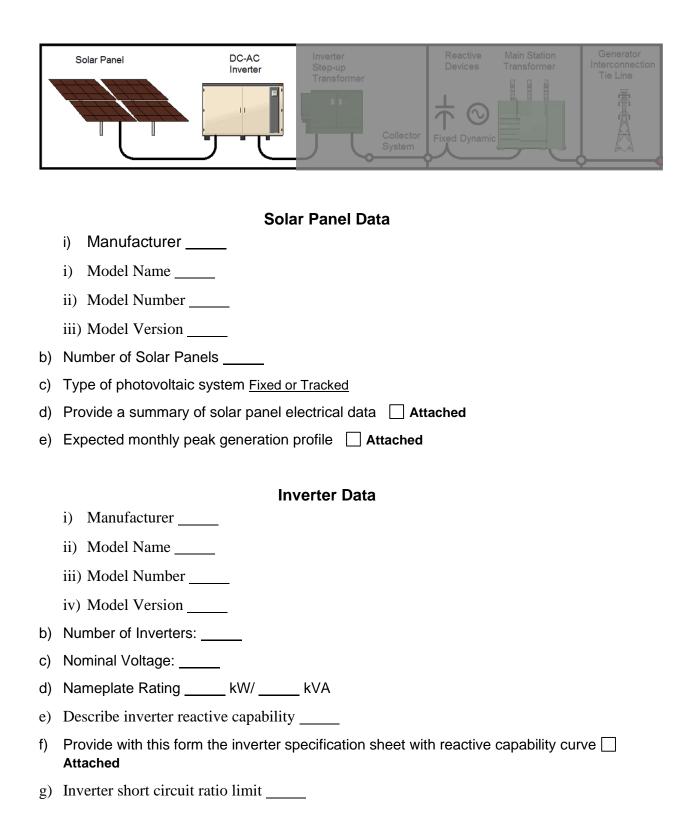
Maximum Net Export Capability (at POI): _____ MW


Revision Date: 07/09/2018

Revision Number: 1


Part 1: Connection Location

- a) Locations of new substations, generators or new taps on existing lines must include:
 State: _____
 County: _____
 Township: _____
 Range: _____
 Elevation: _____
 Latitude: _____
 Longitude: _____
- b) Identify the substation if connecting to an existing District substation (Y/N). If the connection is between two existing substations, then both substations need to be identified.
- c) For connection to an existing District transmission line, identify the line by name as well as the location of the proposed interconnection.
- d) Driving directions to site of proposed facility:



Typical solar interconnection arrangement

Please mark up the diagram below with details of the proposed interconnection. Please include circuit breaker and disconnect switch arrangement details. This One-Line Diagram may be modified as needed, or a proposed One-Line Diagram may be attached.

Part 3: Solar Panel and Inverter Data

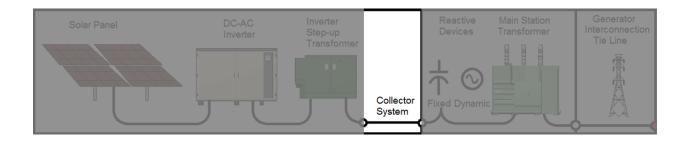
Part 4: Inverter Step-Up Transformer

Number of inverter transformers: ______ Provide data for either two-winding or three-winding transformer as appropriate

Two-Winding Inverter Step-Up Transformer Data (as applicable):

- a) Nameplate Rating: _____ MVA
- b) Maximum Rating (if applicable): _____ MVA
- c) Nominal Voltage for each winding (Low/High): _____ / ____ kV
- d) Winding Connections (Low/High): Delta or Wye / Delta or Wye
- e) Available taps: ____ / ___ / ___ / ___ / kV **or** ____ % ____ # of taps.
- f) Load or no-load tap changer and location of tap changer: _____
- g) Positive sequence impedance (Z₁) _____ %, _____ X/R on MVA rating above.
- h) Zero sequence impedance (Z_0) %, X/R on MVA rating above.

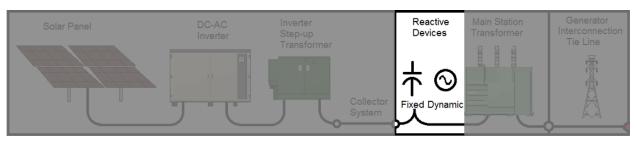
Three-Winding Inverter Step-Up Transformer Data (as applicable)


h) GSU connection and winding (attach diagram and mark to reference this form).

	H Winding Data	X Winding Data	Y Winding Data
Nameplate ratings (i.e.	/	<u> </u>	<u> </u>
OA/FA/FA)	MVA	MVA	MVA
	kV	kV	kV
Rated winding voltage base	Delta or Wye	Delta or Wye	Delta or Wye
	connected	connected	connected
	//	<u> </u>	/
Tap positions available	<u> </u>	/	/
	kV	kV	kV
Present Tap Setting (if	kV	kV	kV
applicable)	KV	K V	K V
Solid or impedance grounding	Ohms	Ohms	Ohms
BIL rating	kV	kV	kV

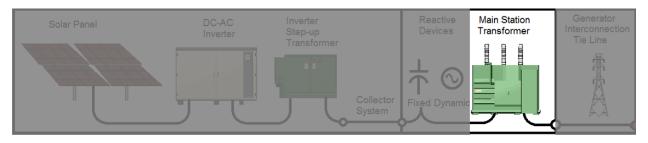
	H-X Winding Dat	H-Y Winding Data	X-Y Winding Data
Transformer Per-unit base	MVA	MVA	MVA
Positive sequence impedance Z ₁	%X/	R%X/R	%X/R
Zero sequence impedance Z ₀	%X/	R% X/R	% X/R

Three-Winding Inverter Step-Up Transformer Impedance Data (as applicable)


Part 5: Collector System Equivalent Model

Provide either absolute or per unit impedance values.

- a) Collector system voltage = _____ kV
- b) Total length of collector system = _____ miles
- c) Overhead or underground construction _____
- d) Collector system equivalent model rating at -15°C/20°C/30°C ambient = / /
 MVA
- e) $R_1 =$ _____ ohm or _____ pu on 100 MVA and line kV base (positive sequence)
- f) $X_1 =$ _____ ohm or _____ pu on 100 MVA and line kV base (positive sequence)
- g) $B_1 = _ \mu F$ or $_ pu$ on 100 MVA and line kV base (positive sequence)
- h) $R_0 =$ _____ ohm or _____ pu on 100 MVA and line kV base (zero sequence)
- i) X₀ = _____ ohm or _____ pu on 100 MVA and line kV base (zero sequence)
- j) $B_0 = _ \mu F$ or $_ pu$ on 100 MVA and line kV base (zero sequence)


Part 6: Station Reactive Compensation Devices

(This describes devices beyond the inverter's built-in reactive capability)

- a) Type of reactive compensation device(s): <u>Fixed or Dynamic</u>
- b) Individual fixed shunt reactive device type:
 - Number and size of each: _____x ___ MVA
- c) Dynamic reactive control device (e.g., SVC, STATCOM):
- d) Control range at rated MW output: _____ Mvar (lead and lag)
- e) Control mode: UVoltage, maintained within CHPD's voltage schedule
- f) Regulation point: High side of Main Station Transformer
- g) Describe the overall reactive power control strategy: _____

Part 7: Main Station Transformer

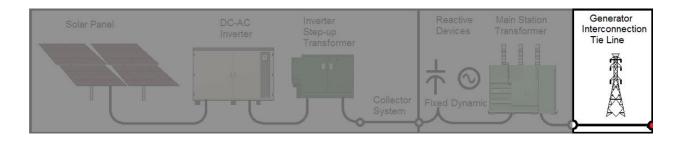
Number of main transformers:

Provide data for either two-winding or three-winding transformer as appropriate.

Two-Winding Main Transformer Data (as applicable)

- a) Nameplate Rating (OA/FA/FA): _____/ ____ MVA
- b) Nominal Voltage for each winding (Low/High): _____ / ____ kV
- c) Winding Connections (Low/High): Delta or Wye / Delta or Wye
- d) Available tap positions: ____ / ___ / ___ / ___ kV or ____ % ____ # of taps.
- Load or no-load tap changer and location of tap changer: _____
- f) Positive sequence impedance Z₁: _____%, _____X/R on self-cooled (OA) MVA rating above.
- g) Zero sequence impedance Z₀: _____ %, _____ X/R on self-cooled (OA) MVA rating above.
- h) For pad mount transformer, construction: 3 / 4 / 5 -legged

Three-Winding Main Transformer Data (as applicable)


i) GSU connection and winding (attach diagram and mark to reference this form).

	H Winding Data	X Winding Data	Y Winding Data
Nameplate ratings (i.e.	<u> </u>	<u> </u>	<u> </u>
OA/FA/FA)	MVA	MVA	MVA
Rated winding voltage base	kV Delta or Wye connected	kV Delta or Wye connected	Leita or Wye connected
Tap positions available	// // kV	// // kV	// // kV
Present Tap Setting (if applicable)	kV	kV	kV
Solid or impedance grounding	Ohms	Ohms	Ohms
BIL rating	kV	kV	kV

	H-X Winding Dat	H-Y Winding Data	X-Y Winding Data
Transformer Per-unit base	MVA	MVA	MVA
Positive sequence impedance Z ₁	%X/	R%X/R	%X/R
Zero sequence impedance Z ₀	%X/	R% X/R	% X/R

Three-Winding Inverter Step-Up Transformer Impedance Data (as applicable)

Part 8: Generator Interconnection Tie Line

Provide either absolute or per unit impedance values.

- a) Point of Interconnection (utility substation/line name): AA
- b) Line voltage: _____ kV
- c) Line length: _____ miles
- d) Overhead or underground construction _____
- e) Line rating at -15°C/20°C/30°C ambient = //// MVA
- f) R₁ = _____ ohm or _____ pu on 100 MVA and line kV base (positive sequence)
- g) X₁ = _____ ohm or _____ pu on 100 MVA and line kV base (positive sequence)
- h) $B_1 = _ \mu F$ or $_ pu$ on 100 MVA and line kV base (positive sequence)
- i) $R_0 =$ _____ ohm or _____ pu on 100 MVA and line kV base (zero sequence)
- j) $X_0 =$ _____ ohm or _____ pu on 100 MVA and line kV base (zero sequence)
- k) $B_0 = _ \mu F$ or $_ pu$ on 100 MVA and line kV base (zero sequence)

Part 9: Dynamic Modeling Data

a) Provide with this form the WECC approved (and if applicable, recommended) dynamic models for generation facilities, including any additional dynamic reactive control devices.

Models Attached

- Include plant volt/var control function model and active power/frequency control function model.
- All the associated files for dynamic modeling should be in PSLF or PowerWorld format, and must be shareable on an interconnection-wide basis to support use in the interconnection-wide cases.
- Model parameters for inverters shall include:
 - (1) Voltage response and ride-thru settings.
 - (2) Frequency response and ride thru settings.
 - (3) Control mode (voltage control for POI >100 kV, power factor control for POI < 100 kV).
 - (4) Any plant-level real power limits.

Chelan PUD requires the solar installation to align with the recommended performance characteristics and other recommendations related to inverter-based resource performance, analysis, and modeling as identified by NERC's Inverter-Based Resource Performance Joint Task Force.

Data Revisions

a) If submitting revised data, record the date and a summary of the sections that have been updated:

1. _____