CHELAN PUD CLIMATE CHANGE FORECAS

Shaun Seaman John Wasniewski Mike Bradshaw April 16, 2018

Today's Presentation

Overview of District efforts to understand possible impacts of climate change How climate data is developed and utilized **Climate Change Forecast** »Discuss impacted areas of interest »Preliminary analysis **Climate Change Vulnerability Assessments** Next steps

INFORMATION **ONLY TODAY NO DECISIONS**

Potential Impact Areas

I. Columbia River mainstem

a. Power generation
b. Aquatic resources
c. Water quality

II.Lake Chelan Basin

a. Chelan Powerhouse generation
b. Lake level management
c. Chelan River flows

- III. Wenatchee and Methow riversa. HCP hatchery program
- IV. Distribution system load

Quantifying Climate Impacts

Storylines of global emissions trajectories

Global Climate Model projections (50-250 Km, daily meteorological data)

Downscaling (5-6 km, daily meteorological data)

Greenhouse **Gas Emission** Scenarios

Global Climate Models

Regional **Climate Data**

Impacts models (<6 km, daily/sub-daily streamflow, water temperature,)

Impacts Modeling Monitoring, Assessment, Planning

Columbia River Flows

(RMJOC)

- Leading the effort for mainstem **>> >>**
 - regulated stream flows
- » Stream flow data expected this November

- **River Management Joint Operating Committee**
 - Identified 22 scenarios to produce

Chelan will use the data to analyze impacts to our Columbia river operations

2020's: Change in Rocky Reach Gen with Climate Change Scenarios

2040's: Change in Rocky Reach Gen with Climate Change Scenarios

States 1

Lake Chelan Basin **Power Generation** and Lake level Management

Using current CHEOPS model Working with UW Climate Impacts Group staff to: »Understand current data »Identify which data sets to use **Power generation** »Water available for generation Lake level management »License requirements »Chelan River flows

Distribution system load

Average monthly temperatures forecasted to change »Higher in both winter and summer »Greater changes in winter temperatures Initial forecasting uses Saddlerock Substation temperature data as a proxy site and 2007-2016 average peak loads UW CIG provided forecast temperature changes based on a similar location The forecast does not account for load growth

District-wide change in monthly demand (aMWs)

Vulnerability Assessments

Qualitative assessments to identify how climate change effects could impact the District Assessed the likelihood, impact, and timing of these changes Used this data to prioritize further actions

Assessment areas Hydro Operations Transmission **Energy Resources Electric Distribution** Water & Wastewater Fiber & Telecom Fisheries & Wildlife Licensing & Compliance Parks

District Vulnerabilities Assessment

Table 2a. Maintain Highly Reliable and Cost Effective Electrical Distribution Infrastructure

Part of a state of the			river	Time a
		District Vulnerabilities	Climatic D	0-3 years
	A.1	Damage to or interference with infrastructure due to increased number of plant species and growth rate may require additional maintenance staff and cost in order to manage vegetation proactively. Currently vegetation inspection is on a 2 to 4 year cycle.	🥽 · 🖁	L
N. N.	A.2	Damage to infrastructure from fire may require additional emergency staff and cost in order to respond and repair/replace.	U	L
1	A.3	Damage to infrastructure from increased tree death due to disease and/or fire may require additional staff and cost in order to manage vegetation proactively.	·I 🐠	L
	A.4	Changes in load shape during winter (i.e., reduction in typical winter peaking) could reduce operational pinch points and make additional power available.	.1	L
	A.5	Increased precipitation may cause flooding and landslides that damage infrastructure, requiring additional emergency staff and cost in order to respond, repair, and replace.		М

e Frame (Velocity) and Likelihood			Adaptation Response Strategies						
	3-10 years	10+ years	Regulatory Coordination	Research and Analysis	O&M Budget	Capital Budget	Stakeholder Coordination		
	L	Μ		✓ ₁₂	\checkmark		✓ ₁₃		
	М	М		✓ ₁₄	\checkmark	\checkmark			
	L	Μ		\checkmark	\checkmark				
	L	L		\checkmark	\checkmark				
	Μ	М			\checkmark	\checkmark			

Next steps

complete analysis

as needed completed

Lake Chelan Modeling

»Select data sets, perform model runs and

Vulnerability Assessments

»Deeper dive into the priority vulnerabilities

»Initial review of highest priority vulnerabilities

»Continue work on medium priorities this year

Institutionalize potential climate change impacts analysis into decision making processes