Distribution Load Resource Balance Projections to 2032

Post 2011 Proposed Term Sheet Negotiations

Chelan PUD
Kurt Carlson & Load Group
3.13.07

This document includes forward-looking projections based on opinions and assumptions. The projections are subject to change based on uncertainties. Actual results may vary.
Objective

- Present load growth scenarios for energy and peak demand for 20 years past 2012
- Compare to PUD share of power resources
- Assess resource adequacy in meeting various load growth scenarios
Assumptions

- Hydro resources include effects of the following:
 - Post current contract expiration 50% of Rocky Reach and Rock Island, 100% Lake Chelan
 - Reduction for Douglas PUD 5.54% share of Rocky Reach
 - Canadian entitlement returns will continue through 2032
 - No PGE capacity exchange post 2012
 - 70 yrs natural water history reregulated to current river operations per PNUCC and Corp study spring ’06
 - Volatility of resource provided by monte carlo simulation
 - A 90% confidence level is used to show downside uncertainty
 - Planning reserves are not subtracted from resources

- 9-Canyon wind farm is estimated at 2 aMW flat

- Impact of the Washington State renewable portfolio standard may increase resource portfolio noted
Assumptions, cont.

Load info:

- Historical actual loads shown for 2004 – 2006
- 2007 is load group forecast
- Future load scenarios are not forecasted based on specific fundamental drivers, but rather are a representation given the noted assumptions in each scenario
- Monthly load volatility is estimate of influence of temperature and seasonal variability quantified by monte carlo simulation
- Scenarios developed by Load Group members: B King, C Rissman, W Fields, K Carlson
Historical load growth
Load Scenarios

- **A – Base:** 2.5% annual growth
- **B – Stress:** New 5 aMW load every 3 years plus 2.5% annual growth
- **C – Bigger Stress:** Extra 10 aMW load each year 2008 – 2010, plus 5 aMW load every 3 years thereafter plus 3.0% annual growth
- **D – Lower:** 1.5% annual growth
Chelan PUD Distribution System
50% take RR / RI
0.0 aMW New load every 3 Years
2.50% Base load growth (2012 - 2032)

Load vs Resources
Weather adjusted load growth ~ 2.7% to 3.7% last 2 yrs

Chelan PUD Distribution System
50% take RR / RI
5.0 aMW New load every 3 Years
2.50% Base load growth (2012 - 2032)

Load vs Resources
Weather adjusted load growth ~ 2.7% to 3.7% last 2 yrs

Scenarios vary with rate and amount of load growth
Strategic Risk Analysis

Chelan PUD Distribution System

50% take RR / RI
Scenario C Bigger Stress

5.0 aMW New load every 3 Years
100% LC, and 9-Canyons

Base load growth (2012 - 2032)

50% take RR / RI
Scenario D Lower

0.0 aMW New load every 3 Years
100% LC, and 9-Canyons

Base load growth (2012 - 2032)

Loads vs Resources

Weather adjusted load growth ~ 2.7% to 3.7% last 2 yrs

Plus add’l 10 aMW new loads yrs 2008 -- 2010

Scenarios vary with rate and amount of load growth
Chelan PUD Distribution System
50% take RR / RI
100% LC, and 9-Canyons

Loads vs Resources

- Resources, normal wtr
- Resources, 90% confidence level
- 2.5% load
- 5.0% load
- 7.5% load

Observation: For comparison Seattle City Light 2005 load was 1,046 aMW

Three other load growth scenarios: 2.5%, 5%, 7.5%
Possibility of a growth rate at a flat 5% or higher scenario is considered very unlikely.
Energy Comments / Conclusion

- Based on the assumptions listed the slice of resources noted should be adequate to meet loads in all 4 scenarios through 2032. Scenario C – Big Stress may have a few months in which the PUD could be deficit based on water and load variability.

Load Group
- K Carlson
- B King
- W Fields
- C Rissman
Peak Demand – Assumptions

- **Peak Demand**
 - 60 minute system peak at zero degrees F.
 - Starts with current forecast for winter 06-07 per Load Group
 - Then grow peak at the same annual rate as energy scenarios
 - Annual growth rate
 - Implies current load mix continues into the future
 - Implies no changes to load time of day shifting or peak shaving

- **Capacity Resources to meet Peak Demand**
 - 50% share of nameplate capacity for hydros, no capacity assumed for 9-Canyon wind farm
 - Reduction for Douglas PUD 5.54% share of Rocky Reach
 - Assumes continuation of the benefits of Mid-C Hourly Coordination Agreement to access District share of the nameplate capacity
 - Capacity reduced: based on 1 unit out at RR, RI and LC all at the same time
Peak Demand vs Resources

At 0^0 F not actual

MW

2006 2010 2014 2018 2022 2026 2030

Peak Demand Scenarios

A Base
B Stress
C Bigger Stress
D Lower
Resource nameplate
Capacity reduced
Peak Demand Comments / Conclusions

- Based on the assumptions listed the slice of resources noted may not be adequate to meet Peak Demand in all 4 scenarios.
- Scenario C – Bigger Stress has the most potential stress starting in year 2023.
- Stresses are set at zero degrees and the probability of that happening on an annual basis has not been evaluated.

Load Group
- K Carlson
- B King
- W Fields
- C Rissman
Load & Capacity Factors

- Chelan County currently has a very low load factor shown by comparing annual energy need vs. 1 hr peak demand = 40%
 - 40% = 182 aMW Energy / 460 MW PeakDemand (forecast @ 0° in 06-07)
 - Seattle’s was 61% (1046 / 1715 in 2005)
 - Puget’s was 55% (2568 / 4684 in 2005)

- The hydro’s capacity factor = 55% (519 energy / 938 capacity share in 2013)

- Observation
 - If the load factor is less than the capacity factor, then capacity requirements will stress the hydro system before the energy requirements
 - This is currently represented in all four scenarios
 - If the load factor and capacity factors were equal, then as load grows both capacity and energy will stress the hydro resources at the same time
Conclusions – Energy & Peak Demand

- Under most circumstances resources are sufficient to meet energy requirements, even under the Bigger Stress scenario C.
- Peak resources on the other hand are inadequate in later years in the higher stress scenarios B and C.

- Future mitigating options under high stress scenarios:
 - Acquire peaking capacity either through contracts or resources
 - Peak load pricing
 - Demand side management programs
 - Peak shaving
 - Peak shifting
 - Conservation programs
 - Cold climate heat pump