Sustainable Fuels & Reciprocating Engines

Bhawramaett Broehm Wärtsilä Market Growth & Development <u>Bhawramaett.Broehm@wartsila.com</u> +1 443-972-0197

December 14, 2023

DELIVERED 76 GW POWER PLANT CAPACITY IN 180 COUNTRIES AROUND THE WORLD

2 © Wärtsilä INTERNAL

Wärtsilä Energy presentation 2020

Clean, reliable, affordable power requires portfolio diversity

Battery storage is not a one-size fits all solution

- + Fast and efficient
- + Affordable option for intraday energy balancing
- + Pairs well with solar

- Not a generator
- Duration limited
- Performance depends on state of charge

- + Duration unlimited
- + Fuel flexible
- + Fast and efficient
- + Pairs well with wind

- Fuel can be expensive
- Emissions intensity depending on fuel

The Dunkelflaute problem

ERCOT: Winter Storm Elliott 2022

Grids large and small experience long wind droughts in the winter. The energy must come from somewhere!

NorthWestern Montana, February 2022

Many sustainable fuel pathways exist, but a clear "winner" has not yet emerged

The best fuel will depend on the problem we are trying to solve

Fuel flexibility provides optionality as objectives change

Opportunities and Challenges

Hydrogen

- + Production eligible for \$3/kg IRA subsidies
- + Can blend with (renewable) natural gas
- Requires new transportation and storage infrastructure
- Explosive and leakage prone

Ammonia

- + Established transportation and storage infrastructure
- + Can blend with (bio)diesel
- Efficiency losses when converting from hydrogen
- Highly corrosive

Biodiesel

- + Available today
- +High energy density
- +Easily stored and transported
- + Can blend with other liquid fuels
- Fuel availability/scalability
- Air pollutant

• 25% blends with natural gas today • 100% H₂ engine by 2026 • Conversions for existing angines by

Wärtsilä Capabilities

Conversions for existing engines by 2030

Ammonia

15% blends today with diesel
100% NH₃ engine by 2028

Biodiesel

• Existing Wärtsilä engines operate on 100% biodiesel today

Final Thoughts

Capacity is needed today

- Load growth (EVs, data centers, heat pumps)
- Retirement of existing generators

Portfolio diversity is important

- A complementary set of resources is needed to mitigate technology-specific risk
- What attributes are important?

100% won't happen overnight

- What happens between now and 2045?
- Pilot programs are essential for learning

Be ready to adapt

- We can't always "wait and see"
- Reliability-driven decisions of today should not compromise the decarbonization goals of tomorrow
- Wärtsilä engines are a "no regrets" solutions

Wartsila Gas Engine Specifications

Engine Model	20V34SG	20V31SG	18V50SG	16V46TS-SG	
Output	9.37 MW	11.35 MW	18.82 MW	20.32 MW	
Heat Rate (BTU/kWh) LHV HHV Net HHV	7,439 8,256 8,442	7,039 7,778 7,953	7,324 8,128 <mark>8,3</mark> 11	7,126 7,899 8,077	
Speed	720 rpm	720 rpm	514 rpm	600 rpm	
Dimensions (L/W/H) Dry Weight (US tons)	42'x 11' x 15' 143	48 x 13 x 17 199	63' x 18' x 21' 391	62' x 19' x 23' 433	
Synchronization (sec) Full Load (minutes) Min to Max Load (sec)	30 2 40	30 2 60	30 5 60	30 5 60	
Minimum Load	10%	10%	10%	10%	

• Can use R-LNG, LPG and/or ethane as a backup/emergency fuel

Parasitic load - Approximately 2.2% to high side of GSU
Output & Heat Rate - measured at generator terminals (pf 0.8, 0% tolerance)

Wartsila **Dual Fuel Engine Specifications**

Dual Fuel	20V34DF	20V31DF	18V50DF
Output	9.37 MW	11.36 MW	18.13 MW
Heat Rate (BTU/KWh) LHV HHV Net HHV	7,555 7,991 <mark>8,575</mark>	7,272 7,713 <mark>8,252</mark>	7,423 7,731 <mark>8,424</mark>
Speed	720 rpm	720 rpm	514 rpm
Dimensions (L/W/H) Dry Weight (US tons)	42'x 11' x 15' 143	48'x 13' x 17' 199	63' x 18' x 21' 391
Synchronization (sec) Full Load (minutes) Min to Max Load (sec)	30 2 50	60 5 60	60 5 60
Genset Minimum Load	40%	50%	40%

Output and Heat Rate are measured at the generator terminals (pf 0.8, 0% tolerance). Higher minimum loads may be required with certain applications using SCR modules with oxidation catalyst.

 Dual Fuel (DF) engines can use ULSD diesel as backup/emergency fuel, and switch fuel while operating.

